

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building reliable and secure
online education applications

Tarun Gupta

Business Unit Head, Cloud Services

MothersonSumi INfotech & Designs Limited

Today’s speaker

Tarun Gupta

Business Unit Head, Cloud Services

MothersonSumi INfotech & Designs Ltd. (MIND)

I head the Cloud business at MIND. I’m a Principal Architect for Enterprise

& Mobile Applications portfolio. I have vast experience handling a variety

of complex enterprise projects/migrations across technology platforms.

Agenda

Application background and need

Old architecture

AWS services used

New architecture and distributed load testing

DevOps and anomaly detection

Reducing cost of failure and cost of experimentation

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fast growing digital education portal

Critical business requirement

10M student: Student will join from state board
and private school

60K school: Including state board and private
school from all over India will join

3 states: Currently this application will be live for
three stats and few private schools

Key challenges

Scalability and reliability

Multi-school support from multiple state

Cost sensitivity

Delivery method

Desktop/laptop:
Through web portal

Mobile:
Wide reach of mobile applications

made it easy to reach more students

even in the rural areas

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Typical monolithic architecture

TUK application
architecture was
based on typical
monolithic style with
single point of failure

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS services used for scalable infrastructure

AWS Application Load Balancer (ALB): Host based and path based routing is implemented for
delivering request to respective web and mobile app servers. Load balancers also assist distributing the
load on multiple servers.

Amazon S3: To reduce load on application servers, all static content and user uploaded content was
moved to Amazon S3, a low cost object storage service.

CloudFront: Since a significant part of content delivered to end users was cacheable and users from
multiple locations, CloudFront was introduced, which not only improved performance, but also further
helped in cost optimization. This also helped in additional protection against DDoS attacks.

Amazon Autoscaling Group (ASG): For TUK assessment autoscaling was implemented to provide
best performance and keeping cost under control as well. Simple scaling policies, implemented based

on CPU Utilization is used. Monitoring Alerts are set for TUK web and Mobile App autoscaling group.

AWS services used for scalable infrastructure

Aurora MySQL Amazon RDS:
Recommended to cater the dynamic workload and reduce
architectural complexity.

TUK achieved following benefits by using it

Simpler

Scalable

Cost-effective

Highly available storage

DevOps
Benefits: The benefits realized as a result of our implementation included no CI/CD server needed and low cost for
CodePipeline; no server maintenance; human effort is eliminated; and reduced time to deploy code changes

Anomaly detection for high reliability

Forecasting and Anomaly Detection with AI Genie | Wavefront :

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Distributed load testing
Master-Slave load testing using Amazon EC2 spot instances: We know that our load test will take less
than an hour. When it comes to the master-slave setup of load testing, we might be needing 5-10 slave servers to
perform an efficient load test. This problem solved by using the spot instances which save 60-70% of cost

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architecture – web and mobile

Screenshot of mobile
directly uploading to

Amazon S3

CloudFront

CodePipeline

CodeCommit

CodeDeploy

CloudWatch

CloudFormation

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Reducing cost of failure

Design for failure to
reduce cost of failure

With fast failure
detection,
microservices based
architecture and
automation, cost of
failure drastically
reduced at the same
time improving
customer confidence

DevOps
Log

aggregation
and insights

Immutable
deployment

Microservices
Easy

separation of
responsibilities

Low cost
backup and DR

High
availability

Automation Easy forensics

Reducing cost of experimentation/change

An agile solution need to
be adapt fast to change

AWS helps in adapting to
change with host of
services

Flexibility of
services

Multiple
pricing options

Templatization
for automation

Split traffic

Governance
controls

Reference
Architectures

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Proposed Architecture using AWS Amplify & AppSync

Benefits of using Amplify and AWS AppSync

Analytics: With the effective analytics feature, Amplify helped the TUK (customer) to identify the behavior
and interest of their application users with ease. These insights were proved to be very useful for designing
data driven marketing strategies and business decision making.

Data Store: It helped the TUK development team by offering a familiar and local first programming model,
with conflict detection, automatic versioning, and resolution in the cloud.

Push notifications: It helped TUK in leveraging customer insights and targeting potential customers in a
more effective way. They were able to tailor their content and communicate via different channels including
texts, email, and push notifications.

Storage: Amplify helped TUK in managing and storing user-generated content including videos, audios,
images, etc. in the cloud in a secured manner. It’s built-in Amazon S3 support helped them leveraging cloud

scale storage effectively.

Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tarun Gupta

